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A completely integrable Hamiltonian motion on the surface
of a sphere
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Received 16 June 1997

Abstract. It has been shown (Gaffet B 1996J. Fluid. Mech.325 113) that the Hamiltonian in
three-dimensional flat space, defined by the simple equations of motion

xx′′(t) = yy′′(t) = zz′′(t) = constant

(xyz)2/3

is reducible by transformations of variables, to another Hamiltonian governing the two-
dimensional motion of a particle on the surface of a sphere. The equations of motion were
shown to possess the Painlevé property and their integration was reduced to essentially, one
quadrature.

The earlier analysis essentially concerned the—comparatively much simpler— case where
the second integral vanishes; all such solutions were found to be described by elliptic functions.
We show in the present work that, when the energy integral (denotedm) and the second integral
(denotedε) are related by

8m3 = (8+ 20ε − ε2)± (ε + 8)
√
ε(ε + 8)

the general solution is again represented by elliptic functions. The separation of variables is
completed, and the solution presented in detail for the casem = −3, chosen as an example.

1. Introduction

The Hamiltonian which is the subject of the present work has its origin in Ovsiannikov
(1965) and Dyson’s (1968) fluid dynamical model of spinning gas clouds maintaining an
ellipsoidal shape. As Dyson noted, his model can equivalently be described as a single-
particle Hamiltonian in nine-dimensional space, the parameter space of the (3×3) matrices
that represent the instantaneous dilatation, deformation and orientation of the cloud. In
cases without rotation, the (3× 3) matrices become diagonal and the equivalence is with a
single-particle Hamiltonian in three-dimensional flat space. For a polytrope with adiabatic
index γ , the corresponding equations of motion assume the simple form

xx ′′(t) = yy ′′(t) = zz′′(t) = constant

(xyz)γ−1
. (1.1)

Recently it has been shown (Gaffet 1996) that the above system is completely integrable
when the cloud’s gas is monatomic (γ = 5/3); moreover, the radial part of the motion may
then be separated out, thereby reducing the Hamiltonian to a two-dimensional one, governing
the motion of a particle on the surface of the unit sphere (the proof is summarized in the
appendix). The subject of the present paper is to study the properties of that Hamiltonian
defined on the 2-sphere. The corresponding spherical motions may be derived from the
Lagrangian

L = 1

2

(
dσ

dt

)2

− VS (1.2)
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1582 B Gaffet

where dσ is the element of arc-length on the spherex2+y2+z2 = 1 andVS is the potential,
which in this model is of the form

VS = 3/2

(xyz)2/3
. (1.3)

The momentaπ1 and π2 are just the covariant velocity components, using the spherical
metric. Using coordinatesH ≡ y/x andK ≡ z/x, the resulting equations of motion read

d

dt

(
Ḣ

δ

)
= δ

(HK)2/3

(
1−H 2

H

)
d

dt

(
K̇

δ

)
= δ

(HK)2/3

(
1−K2

K

)
(1.4)

where the dot inḢ and K̇ symbolizes differentiation with respect to timet and δ ≡
(1+H 2+K2) = 1/x2. Remarkably, they possess the Painlevé property—not as functions
of time, butas functions of another independent variableu

u =
∫

δ dt

(HK)2/3
. (1.5)

The dependentvariables require some modification too, it is strictly speaking the functions
U(u) andV (u) which have the Painlevé property, where

U ≡ H 2/3 V ≡ K2/3. (1.6)

The new form of the equations of motion is then

d

du

(
U ′

V
√
U

)
= 2

3

(
1− U3

U3/2

)
d

du

(
V ′

U
√
V

)
= 2

3

(
1− V 3

V 3/2

)
(1.7)

where the prime denotes differentiation with respect tou.
There are two first-integrals: the energy constant

1

2

(
dσ

dt

)2

+ VS = 9m

2
(1.8)

or explicitly

4m =
[
(1+ V 3)U ′2

UV 2
− 2U ′V ′ + (1+ U

3)V ′2

U2V

]
+ 4(1+ U3+ V 3)

3UV
(1.9)

and the second integralI2

I2 = 3

4

U ′V ′

UV

(
U ′

U
− V

′

V

)
+
[
U ′

V 2
(V 3− 1)− V ′

U2
(U3− 1)

]
. (1.10)

The system is accordingly reducible to a first-order ordinary differential equation (ODE),
which must be of a type integrable by quadrature, its integrating factor being determined
once the second integral is known. However, the integrating factor obtained9(U, V ) has a
very complicated form. The fact that the system is completely integrable indicates that any
quadrature involved ought to be reducible to quadratures of functions ofone independent
variable only. It is the purpose of this work to show how this separation of variables can
be performed, at least in some special cases (a completely general treatment is deferred to a
future work). The special cases that we study here turn out to be exactly soluble by elliptic
functions.
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2. General results

We start by summarizing here some general results, some of which have already been
derived in our earlier work. First, it should be pointed out that, by nature, the problem
has an underlying symmetry under permutation of the three Cartesian coordinatesx, y, z;
which makes it very useful introducing a 3-vector notation—even though a full rotational
symmetry is absent. Denotingx the position vector{x, y, z}, we form the cross-product

3

2
X = x ∧ x

′(u)
(xyz)2/3

(2.1)

whereX has components{X, Y,Z}, in terms of which the equations of motion take the
simple form

3

2

dX

du
= (y2− z2)

yz
(2.2)

together with two more equations deducible by circular permutation. The following
properties are worth noting,

x ·X = 0= x′ ·X = x ·X ′. (2.3)

The relation betweenx, X and the original variablesU , V , U ′, V ′ is

x = 1√
δ

whereδ ≡ 1+ U3+ V 3

y

x
= U3/2 z

x
= V 3/2 (2.4)

X =
√
UV

(
V ′

V
− U

′

U

)
Y = −V

′

U
√
V

Z = U ′

V
√
U
. (2.5)

In this new notation the first-integrals allow a simple and compact formulation

4m =X2+ 4/3

(xyz)2/3
(2.6a)

I2 = 3

4
XYZ − (xyz)1/3

(
X

x
+ Y
y
+ Z
z

)
(2.6b)

and the definition (1.5) of the independent variableu may be written

u =
∫

dt

(xyz)2/3
. (2.7)

2.1. The symmetry generators

We adopt the following convention for symmetry generators:δ̄iF denotes the variation
produced by a generator (Gi) acting on an arbitrary variableF , when t is kept constant
(δ̄i t = 0), while δiF is the corresponding variation at constantu (δiu = 0). Clearly, the
two types of variation are related by

δ̄F ≡ δF + F ′(u)δ̄u. (2.8)

The indexi which specifies the generator considered will be occasionally omitted when
there is no ambiguity.

Thus the generator (G0) of time translation has componentsδ̄F = Ḟ (t). A second
generator (G2) can be deduced from the existence of the second integralI2: the general
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theory of Hamiltonian systems (Landau and Lifshitz 1976, Whittaker 1959) indicates that
in the presence of an integral of the motion

I [q1, q2, p1, p2] = constant

(where qi and pi are the coordinates and momenta), the system admits the symmetry
generator (G) defined by

δ̄qi = − ∂I
∂pi

δ̄pi = + ∂I
∂qi

. (2.9)

In the present case the momentaπ1 andπ2 canonically conjugate to the coordinatesH and
K (already calculated in Gaffet (1996)) are

π1 = 3

2δ
(Z −KX) π2 = 3

2δ
(HX − Y ) (2.10)

and, conversely,
3
2X = Hπ2−Kπ1 − 3

2Y = HKπ1+ (1+K2)π2
3
2Z = (1+H 2)π1+HKπ2.

(2.11)

The differential ofI2 is

dI2 = dX

[
3

4
YZ − (xyz)

1/3

x

]
+ (xyz)

1/3

3
d lnx

[
2X

x
− Y
y
− Z
z

]
+(Terms deduced by circular permutation) (2.12)

from which the second generator may be obtained:

−4

9
δ̄x = X

2
(yY − zZ)+ 2x

3

(z2− y2)

(xyz)2/3
. (2.13)

Similar formulae givingδ̄y and δ̄z may be found by applying a circular permutation.
However, sinceu, instead oft , is the independent variable appropriate to the Painlevé

expansions, it is preferable to use a constantu formulation of generators. In particular, the
Bäcklund transformation relating different solutions (if such a relation is indeed present)
is expected to be a transformation leavingu unaltered, and therefore obtainable from a
combination of generators at constantu. Since the two types of variation are related by
(2.8), that raises the question of whetherδ̄u, which is defined by the integral

−3

2
δ̄u =

∫
δ̄ ln(xyz) du (2.14)

may not in fact turn out to be calculable in finite terms. Remarkably, it does permit an
expression in closed form:

δ̄u = − 9
8XYZ. (2.15)

Consequently, in a formulation whereu is kept invariable, (G2) is expressed by the following
modified formula

−4

9
δ ln x = 3

4
XYZ(xyz)2/3

(yZ − zY )
x

+ X
2

(yY − zZ)
x

+ 2(z2− y2)

3(xyz)2/3
(2.16)

(and by the formulae deducible by circular permutation). The variationsδU and δV may
of course be found from

3
2δ lnU ≡ δ ln y − δ ln x 3

2δ lnV ≡ δ ln z− δ ln x. (2.17)
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2.2. The potentials8, u, S, t

For an arbitrary variableF , the variation ofF produced by the time translation generator
(G0) is δ̄0F = Ḟ (t), which may be rewritten(∂F/∂t)|8, where8 denotes a quantity that
remains constant along each trajectory. Similarly the variation produced by the second
generator (G2) may be writtenδ̄2F = (∂F/∂8)|t—since, by definition of̄δ the timet does
not vary. More formally, the resulting formula for the differential dF

dF = δ̄0F dt + δ̄2F d8 (2.18)

does determine an exact differential d8 (a closed 1-form d∧ d8 = 0) as a consequence of
the general properties of generator componentsδ̄iF . In particular,

dU = U̇ dt + δ̄2U d8 dV = V̇ dt + δ̄2V d8 (2.19)

and, conversely

dt = [δ̄2V dU − δ̄2U dV ]/ det (2.20a)

d8 = [U̇ dV − V̇ dU ]/ det (2.20b)

where det≡ (U̇ δ̄2V − V̇ δ̄2U). Since(U̇ dV − V̇ dU) = 0 (whereU̇ and V̇ are implicit
functions ofU andV ) is just the first-order ODE to which our system may be reduced,
the latter equation (2.20b) shows that det is the integrating factor. In addition, it shows
that both8 and the timet may be viewed as potentials defined (up to arbitrary additive
constants) on the two-dimensional space{U,V }, i.e. on the 2-sphere.

The same reasoning using the constantu formulation of generators and theu-translation
generator (G1) as the first generator, in place of (G0), leads to the conclusion that the
variableu, as well as the timet , plays the role of a potential defined on the unit sphere.

There is a fourth potential, whose existence is ensured by the general theory, the
abbreviated actionS, defined by

dS = (π1 dH + π2 dK). (2.21)

Along trajectories, this reduces toS = ∫ L dt+(9m)/2t , since 9m/2 is the energy; rewriting
the LagrangianL = ((9m)/2− 2VS) and noting that the potential term here is just

VS = 3

2

du

dt
(2.22)

we obtain an expression in closed form,S = 9mt − 3u, valid along each trajectory. This
means that the potentialS is a function of the three other potentials,S = 9mt −3u+f (8).
The functionf (8) must of course be linear and a detailed calculation gives the complete
formula

S = 9mt − 3u+ 9I2

4
8. (2.23)

Since the existence of the potentialsS, t and8 is a direct consequence of the general
Hamiltonian theory, the above relation may conversely be viewed as a proof thatu is
also a potential (it constitutes an explanation for the fact that the integralδ̄u introduced in
section 2.1 was found calculable in closed form).

The space considered being bi-dimensional, any differential is a linear combination of,
for example, du and d8; in particular,

dt = UV

δ

[
du+ 9

8
XYZ d8

]
(2.24)

as a direct consequence of (2.15). Then the relation (2.23) entails

dS = 3 du

[
3m
UV

δ
− 1

]
+ d8

[
81m

8

UV

δ
XYZ + 9

4
I2

]
. (2.25)
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2.3. The integrating factor

Writing d8 = [V dV − αU dU ]/9, where

α ≡ VV ′

UU ′
(2.26)

the analysis of the preceding section shows that the integrating factor9 must be given by

9

V
≡ δ̄2V − V

′

U ′
δ̄2U ≡ δ2V − V

′

U ′
δ2U. (2.27)

This allows a simple representation in determinant form

9 ≡ 2

Z

√
V δ

∣∣∣∣∣∣
x,mX, I2X

y,mY , I2Y

z,mZ, I2Z

∣∣∣∣∣∣ (2.28)

wheremX ≡ ∂m/∂X etc, the partial derivatives being taken atx, y andz constant. It will
be useful to consider, in addition toα, the related parameterβ

β ≡ UV 2

U ′

(
U ′

U
− V

′

V

)
≡ (V 2− αU2). (2.29)

The integrating factor may then be written

9 ≡ Nα − U2Nβ + 3I2
UV

U ′
(βU − α) (2.30)

where

N(α, β) ≡ (α3+ β3+ 3mαβ − 1) Nα ≡ ∂N

∂α
Nβ ≡ ∂N

∂β
(2.31)

and the functionα(U, V ) is implicitly defined by the algebraic equation

(3mUV − δ)N2 = 3

4
I 2

2 (α
2U + β2+ V )3. (2.32)

Thus9 is a quite complicated integrating factor.

2.4. The Painlev´e expansion

As mentioned in the introduction, our mechanical system possesses the Painlevé property
(a summary of Painlev́e’s method of analysis may be found in Ince (1956)) and this fact
alone indicates that it is a completely integrable Hamiltonian system, according to a well
known conjecture (Ablowitz and Segur 1977).

The Painlev́e analysis is based on a consideration of the Taylor series expansion of
the general solution in the vicinity of its movable singular points. The only singularities
present in the functionsU(u) andV (u) are poles, of order one or two. Thegeneric type
of singularity (involving four integration constants) is the simple pole

U = a0

u
+ a1+ a2u+ · · · V = b0

u
+ b1+ b2u+ · · · (2.33)

where theai ’s andbi ’s are symmetrically related as

a0b0 = −3/4 a0b1 = a1b0 (a0b2− 2a1b1+ a2b0) = 0 (2.34)

and the fourth integration constant provided by the arbitrary translations of the pole is
implicit.
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The variablesα andβ tend at the pole to finite limitŝα and β̂, respectively,

α̂1/4 =
√

3

2a0
β̂ = 9

4a2
0

(a2
1 − a0a2). (2.35)

Whenm and I2 are fixed, these two constants cannot be independent. We find thatα̂ and
β̂ are algebraically related by

N(α̂, β̂) ≡ (α̂3+ β̂3+ 3mα̂β̂ − 1) =
√

3

2
I2α̂

3/4(α̂3/2− 1). (2.36)

For each pair of values ofm and I2, the algebraic nature of the above relation strongly
constrains the analytical form of the solutions. Thus, whenI2 = 0, the relation (2.36),
which is then cubic, is of genus one and hence parametrable by elliptic functions; the
corresponding general solution too is represented by elliptic functions.

Let us introduce in place of̂α and β̂ two new constantsλ andµ

λ = (α̂3/2− 1)

2β̂α̂1/4
µ = 2λ3+ (α̂

3/2+ 1)

2α̂3/4
(2.37)

so the relation (2.36) becomes

µ2 = [4λ6+ λ3I2

√
3− 3mλ2+ 1]. (2.38)

Clearly, it is of genus one (parametrable by elliptic functions) whenever the sixth-degree
polynomial on the right-hand side has a double root, a condition which is realized whenm

andI2 satisfy the relation

8m3 = (8+ 20ε − ε2)± (ε + 8)
√
ε(ε + 8) ε = 3

16
I 2

2 . (2.39)

For such values ofm and I2, the analytical form of the solutions must be simpler than in
general, and is not expected to involve functions of a more complicated type than elliptic.
We shall treat in the next section as a typical example the case where

m = −3 andI2 = 8i
√

2/3.

2.5. Rescaling

The results of the preceding sections all refer to the Hamiltonian

H = 1

2

(
dσ

dt

)2

+ VS where Vs = 3(1+ U3+ V 3)

2UV
.

The absolute scale of the potential termVS is, obviously, a reducible parameter; the product
VSt

2 need only be kept unaltered. Changingthe sign of the potential however, entails
rescalingt (andu and I2) by the imaginary factor i. Conversely a solution corresponding
to a pure imaginary value ofI2 (and pure imaginary values ofu) may be re-interpreted as
a real solution of the modified Hamiltonian

H = 1

2

(
dσ

dt

)2

− VS.

(The fact thatu must take imaginary values in order for this re-interpretation to be valid is
not a difficulty here, since the functions ofu that are considered in the present work are all
analytical functions, defined throughout the complex u-plane.)
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3. The case wherem = −3

We now turn to consideration of the case wherem = −3 andI 2
2 = −128/3.

3.1. The parametrization problem

The main difficulty lies in obtaining an appropriate parametrization of the implicit relations
defining the two functionsU ′(U, V ) andV ′(U, V ), or equivalently,X(U, V ). Let us first
write down these relations in a form as convenient as possible. We introduce new variables
ξ , η andζ proportional toX/x, Y/y, Z/z, through the relations

X/x = −I2

4
ξ

√
δ

UV
Y/y = −I2

4
η

√
δ

UV
Z/z = −I2

4
ζ

√
δ

UV
(3.1)

which may also be written

ζ = − 4

I2

U ′

V 2
(3.2a)

η = + 4

I2

V ′

U2
(3.2b)

ξ = −(ηU3+ ζV 3) (from x ·X = 0). (3.2c)

Then we obtain

X2 = −8

3UV
[ξ2+ η2U3+ ζ 2V 3] (3.3)

(δ − 3mUV ) = (1+ U3+ V 3+ 9UV ) (3.4)

so the integral of energy takes the form

(1+ U3+ V 3+ 9UV ) = 2[ξ2+ η2U3+ ζ 2V 3] (3.5)

while the second integral simply reads

2ξηζ + (ξ + η + ζ ) = 4 (3.6)

andξ , η andζ also satisfy the relation (3.2c)

(ξ + ηU3+ ζV 3) = 0. (3.7)

That is the set of algebraic equations (three relations (3.5–7) between five variablesξ ,
η, ζ , U and V ) that have to be solved parametrically. As a first step we chooseη and
θ ≡ (2ξζ + 1) as parameters; then equation (3.6) gives (ξ + ζ ); ξ and ζ are accordingly
determined by an equation of the second degree

ξ2+ ξ(ηθ − 4)+ (θ − 1)

2
= 0. (3.8)

It has discriminant1

1 = (ηθ − 4)2+ 2(1− θ) (3.9)

and its two roots are expressed by

2ξ = (4− ηθ)+
√
1 2ζ = (4− ηθ)−

√
1. (3.10)

Similarly, introducing the new variable

π ≡ V

U2
(3.11)
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equation (3.7) takes the form of a second degree equation forU3

ζπ3U6+ ηU3+ ξ = 0. (3.12)

Its discriminant is

D = η2+ 2π3(1− θ) (3.13)

andU andV are accordingly given by

U3 = (
√
D − η)
2ζπ3

V = πU2. (3.14)

In this way the variablesξ , ζ , U andV may be eliminated, and the algebraic system (3.5–7)
is thereby converted into a single algebraic relation involvingπ , η andθ only,

[9π(θ − 1)+ ϕ(η)]
θ

+ (1+ 4η − η2θ)+
√
D1 = 0 (3.15)

where

ϕ(η) ≡ (2η2− 8η − 1). (3.16)

Taking the square of the above relation (3.15), so as to eliminate the square root, changes
it into a cubic equation implicitly definingπ(η, θ). The corresponding algebraic surface in
the space of coordinates{π, η, θ} presentstwo singular linesthe locus of double points of
the plane sections; the first one is the curve

θ = 0 π = ϕ(η)/9 (3.17)

and the second one is

3π = ψ(η) ≡ (2η2− 2η − 1) θ = (2η − 1)/π. (3.18)

The sectionsη = constant are quartic curves in coordinates{1/π, θ}; the presence of a pair
of double points being ascertained, these curves are of genus one and thus admit an elliptic
parametrization. Further study shows that the radical involved may be rationalized (by
relaxing the assumption ofη constant), and we are thus led to the following fully rational
representation of the surface in{π, η, θ} space

−2η = E1

E2
(3.19)

where

E1 ≡ σ 2λ(3λ− 2)+ 2σ(2λ2− 3λ+ 2)− (λ+ 2)2

E2 ≡ σ 2(4λ2+ λ− 2)+ 2σλ(3λ− 2)+ (2λ2− 3λ+ 2) (3.20)

θ = −2E2
T1

T2
(3.21)

where

T1 ≡ σ 2(23λ2− 17λ+ 2)+ 2σ(13λ2− 25λ+ 10)+ (5λ2− 23λ+ 14)

T2 ≡ σ 4(3λ− 2)2(λ2− 4λ+ 2)− 4σ 3(3λ− 2)(λ3+ 9λ2− 9λ+ 2)

−2σ 2(25λ4+ 22λ3− 66λ2+ 40λ− 8)

−4σ(11λ4− 7λ3+ λ2− 8λ+ 4)

−(11λ4− 20λ3+ 18λ2− 40λ+ 24) (3.22)

and

π = λT2

2(3λ− 2)E2
2

. (3.23)
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The simple expression of the productπθ (which does not involveT2) is worth noting:

πθ = −λT1

(3λ− 2)E2
. (3.24)

The above result (i.e. the representation 3.19–24) is essential, and the integration of the
equations of motion, completed in the next section, is thus made a comparatively simple
task.

3.2. The differential system forλ(u) andσ(u)

The next step is to obtain the differential equations satisfied by the two parametersλ and
σ as functions of the independent variableu. Since the functionsη(λ, σ ) and θ(λ, σ )
are given, this is achieved by computingη′(u) andθ ′(u) and resolving the resulting linear
system forλ′(u) andσ ′(u):

∂η

∂λ
λ′(u)+ ∂η

∂σ
σ ′(u) = η′(u) ∂θ

∂λ
λ′(u)+ ∂θ

∂σ
σ ′(u) = θ ′(u). (3.25)

The coefficients of this linear system are readily obtainable by differentiation of the
formulae (3.19–22) found in the preceding section; the right-hand sides are given by

η′(u) = I2

16π

[
2η

(
η + 2ζ

V 3

U3

)
+ (V

3− 1)

U3

]
θ ′(u) = −I2

4π

[
θζ
V 3

U3
+ 2− ζ

]
. (3.26)

We also note that

π ′(u) = I2

4

[
η + 2ζ

V 3

U3

]
. (3.27)

Eliminating the dependence on variablesU , V , ξ andζ , this may be rewritten

η′(u) = I2

16π(θ − 1)
{[ηθ − 2(η − 2)]

√
D − η

√
1}

= 24

I2

√
1

{[
η − 2(η − 2)

θ

]
+ ϕ(η)

9π

[
η + 2(η − 2)

θ

]}
θ ′(u) = 16

3I2π
(
√
1+ θ

√
D) = 16

3I2π
√
1

[9π(1− θ)− ϕ(η)+ 2θ2η2− 3θ(4η + 1)+ 18]

π ′(u) = I2

4

√
D. (3.28)

Concerning the remarkably symmetric expression ofη′(u), the following identities are worth
noting

[ηθ − 2(η − 2)] ≡
√
1+ 2ϕ(1− θ) (3.29a)

η[ηθ − 2(η − 2)] ≡
√
D1+ (9π − ϕ)(θ − 1)

θ
(3.29b)

(the latter equation (3.29b) constituting an alternative form of the algebraic relation (3.17)
linking π , η andθ ).

Let us introduce a functionµ(λ), through

µ2 ≡ (3λ− 2)ν(λ) ν(λ) ≡ (λ3+ 3λ− 2). (3.30)

The essential property of the radicals is that
√
1/µ and

√
D/µ are both rational functions

of the two parametersλ andσ .
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The resulting differential system satisfied byλ(u) andσ(u), in spite of the complexity
of the transformation of variables involved, has a simple form

λ′(u) = 16

3I2
µ(λ) (3.31a)

σ ′(u) = 16

3I2

(σ − 1)

λµ
[σ(2λ− 1)(3λ− 2)+ (λ3+ 3λ2− 5λ+ 2)]. (3.31b)

We observe that the separation of variables is completed, since equation (3.31a) for λ(u)
does not involve the other functionσ . In addition, the equation forσ(λ) is of Riccati type,
and is linearized by the transformationy ≡ 1/(σ − 1).

Integration of the Riccati equation yields the general solution of the system

38 = λ(3λ− 2)

µ(σ − 1)
+
∫
(2λ− 1)(3λ− 2)

ν(λ)

dλ

µ
(3.32)

where8 is the integration constant, normalized here in such a way as to precisely coincide
with the potential8 described in the preceding sections. The second potentialu, in view
of (3.31a), must have the form

u = 3I2

16

∫
dλ

µ
+ g(8). (3.33)

Compatibility with the general formula

du = V

9U ′
(δV dU − δU dV ) (3.34)

(which is the analogue for du of equation (2.20) for dt), together with the expressions (2.16)
and (2.17) of the second generator, yields the complete formula

u = 3I2

16

[∫
dλ

µ
− 58

]
. (3.35)

3.3. The action

To sum up, the general solution is found through the following steps: first, an (elliptic)
function λ(u) is obtained through the quadrature (3.35); then the functionσ(u) is found
through the quadrature in (3.32)—which in the present case is an elliptic integral; to complete
the solution, one should then calculate the timet or, equivalently, the actionS, which is
related tot by (2.23).

In differential form, the action is given by

dS = 9UU ′

4V ζδ
[(ζ − ξ) d lnU + (ξ − η) d lnV ] (3.36)

but, applying the formula (2.25), we more directly obtain

∂S

∂σ
= 81

16
I2
∂8

∂σ

[
1+ UV

δ

(
5− 6XYZ

I2

)]
(3.37)

together with a similar result for(∂S/∂λ). (∂8/∂σ) is readily deduced from equation (3.32),

XYZ ≡ 2I2

3
ξηζ ≡ I2

3
η(θ − 1)

and

(1+ U3+ V 3)

UV
≡ 1

π

[
(2η2+ 1)+ (ϕ(η)− 9π)

θ

]
. (3.38)
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Substituting the parametric representation (3.19–23), one finds

(9π − ϕ(η))
θ

= T2T3

2(3λ− 2)E3
2

(3.39)

where

T3 ≡ σ 2(3λ− 2)(λ2+ 2λ− 2)+ 2σ(3λ− 2)(2λ2+ λ+ 2)+ (3λ3− 2λ2+ 2λ+ 4) (3.40)

and then
δ

UV
= 66(λ; σ)

E2T2
(3.41)

where66 is a polynomial of degree six inσ (and also inλ), of which we shall merely write
down the leading term,

66 ≡ σ 6(3λ− 2)(5λ− 3)(31λ4+ 36λ3− 6λ2− 56λ+ 24)+ · · · . (3.42)

Then the coefficient appearing in (3.37) is found as[
1+ UV

δ

(
5− 6XYZ

I2

)]
= 2(σ − 1)2ν(λ)

64

66
(3.43)

where64 is another polynomial, quartic inσ ,

64 ≡ σ 4(3λ− 2)(11λ2− 20λ+ 8)+ · · · . (3.44)

Finally, the action is given by the quadrature

S = −27I2

8
λµ

∫
64

66
dσ. (3.45)

The six residues are found to have identical values, up to sign

6′6(σ )
64

= ±6i
√

2λµ whenever66 = 0 (3.46)

a result which entails decomposability of66

66 ∝ (A2+ 2µ2B2)

whereA andB are polynomials cubic inσ .
66 and64 turn out to be expressible in the form

66 ≡ (A2+ 2µ2B2)

(3λ− 2)(5λ− 3)
64 ≡ (A∂B/∂σ − B∂A/∂σ)

3λ(3λ− 2)(5λ− 3)
(3.47)

where
A

(3λ− 2)
≡ [σ 3(5λ− 3)(5λ2+ 4λ− 4)+ 3σ 2(3λ− 2)(7λ2− λ− 2)

+3σ(3λ− 2)(5λ2− 5λ+ 2)+ (11λ3− 23λ2+ 32λ− 12)]

B ≡ [σ 3(3λ− 2)(5λ− 3)+ 3σ 2(3λ− 2)(2λ− 1)+ 3σ(5λ2+ λ− 2)

+(6λ2+ λ− 6)]. (3.48)

The action is accordingly obtained in closed form

S = −9I2

16

{√
2 tan−1

(
µ
√

2
B

A

)
+ h(λ)

}
(3.49)

and the integration ‘constant’h(λ), which may be determined from the other partial
derivative∂S/∂λ, is the elliptic integral

h(λ) ≡
∫
(3λ− 2)

(5λ− 3)

dλ

µ
. (3.50)
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3.4. The curvesλ = constant
The parametrization obtained in section 3.1 determines all the physical variables in terms of
λ andσ . Conversely, it would be of interest to have an explicit expression of the parameters
(particularly ofλ, which plays an essential role) directly in terms of physical variablesπ ,
η andθ . We obtain the following formula:(

3λ− 2

λ

)
πθ = 3(3π − ψ)

(πθ + 1− 2η)
− 2(η + 1) = (9π − ϕ)− 2πθ(η + 1)

(πθ + 1− 2η)
. (3.51)

The curves of constantλ are then the intersections of surfaces represented by equations (3.15)
and (3.51); they are manifestlyconic sections(ellipses of hyperbolae)in the (η, ρ) plane,
letting

ρ ≡ πθ (3.52)

for conciseness. It is worth noting that, as a consequence of (3.51),π is a rational function
of the conic curve’s coordinates (η, ρ).

Each conic is tangential to the second singularity line, which is (in the (η, ρ) plane) the
straight line(ρ + 1− 2η) = 0, at the point

η = (2− λ)
2(2λ− 1)

ρ = 3(1− λ)
(2λ− 1)

and each intersects the first singularity line, which is the straight lineρ = 0, at two points.
The equation of the conic may be written

X2
1 + aX1X2+ bX2

2 + cX1 = 0 (3.53)

where

X1 ≡ (ρ + 1− 2η) X2 ≡ ρ + 3(λ− 1)

(2λ− 1)
(3.54)

a = −2(λ− 1)(λ2+ 6λ− 4)

λ(λ2− 4λ+ 2)
b = −2(2λ− 1)2

(λ2− 4λ+ 2)
c = −6µ2

λ(2λ− 1)(λ2− 4λ+ 2)
.

(3.55)

3.5. Effect onλ of permutations of the coordinate axes

The formula (3.31a) suggests thatλ might be invariant under permutations of the Cartesian
coordinates (x, y, z) since du is manifestly invariant. Closer inspection reveals that, sinceu

itself need not necessarily be invariant,λ might instead be transformed into another value
λ∗, related toλ by a fixed translation of the independent variableu

λ∗ = λ(u+ h). (3.56)

This is a point worth investigating (in view of the importance of the role played by
permutation invariant quantities, such as the potentialVs = 3

2(xyz)
−2/3, in the present

problem).
Let us consider for definiteness the permutation of coordinatesx and y, leaving z

unaltered. Clearly, it induces a corresponding permutation ofξ andη, without affectingζ .
The transformed valuesπ∗, η∗ and θ∗ of the physical variables may be deduced, and the
new valueλ∗ of λ may be found by application of the formula (3.51). The result is, as
indicated by the general form of equation (3.56), a function ofλ alone, it does not involve
the second parameterσ and it is one of the solutions of the second degree equation

(13λ2− 18λ+ 6)λ∗2− 2λ∗(3λ− 1)(3λ− 2)+ 2λ(3λ− 2) = 0. (3.57)
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We conclude thatλ is not in fact permutation invariant. Rather, the invariant quantity is

L ≡ (13λ2− 18λ+ 6)

λ2(3λ− 2)
. (3.58)

According to (3.56)λ andλ∗ ought to be related by a fixed translationh of the variableu.
To find the amount of the translation, it will be convenient to reduce the elliptic function
λ(u) to its canonical Weierstrass form. IntroducingW ,

W ≡ (13λ− 6)

2(2− 3λ)
(3.59)

we obtain

W ′2(u)
(4W 3− 51W − 71)

= −λ
′2(u)

2µ2
= 1

3
(3.60)

showing thatW [v ≡ u/√3] is a Weierstrass function. The transformation formula induced
by (3.57) on W, reads

−2W ∗ = (12W 2+ 84W + 131)+ 8i
√

2W ′

(2W + 3)2
(3.61)

which is precisely (Goursat 1949) the well known translation formula for Weierstrass
functions,v→ v + h, in the particular case whereW(h) = −3/2.

We remark that, by application of the doubling formula (Goursat 1949)W(2h) =
−3/2= W(h), meaning that 3h is one of the periods of the elliptic functions considered.

4. Conclusion

The spherical motion in a potentialVS ∝ (xyz)−2/3 was shown in a recent work (Gaffet
1996) to present a second integral of the motion and, as a result, to be integrable by
quadrature. The integrating factor, however, was a very complicated, implicitly determined
function of the coordinatesU and V on the sphere. The aim of the present work was
to reduce the quadrature involved to its simplest form. In view of the complexity of the
calculations involved, it has not been possible here to perform this reduction in the most
general case, rather, we have selected the special case, brought to light by a Painlevé
analysis, where the two integralsm andε = (3/16)I 2

2 are related by

8m3 = (8+ 20ε − ε2)± (ε + 8)
√
ε(ε + 8)

and we have treated as a typical example the case wherem = −3. (The zero energy case
wherem = 0 andI2 = 4/

√
3 is considerably simpler to handle than cases wherem 6= 0,

but we have chosen not to report it here in order not to confuse the reader by a plethora
of notation; the case ofm = 1 andI2 = 0 was treated along with all cases in whichI2

vanishes in Gaffet (1996).)
We have been able to reduce this system to the very simple type

λ′(u) = constant× µ(λ)
whereµ2 is a quartic polynomial inλ, thus not only completing the separation of variables
but also obtaining an explicit formulation of the general solution in terms of elliptic
functions. We remark that the transformation of variables (section 3.1) leading to this
simple result is of surprising complexity.

We hope to complete this study by extending it in a future work to fully arbitrary values
of the two integrals of the motion.
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Appendix. The separability of the radial motion

We have mentioned in the introduction the Hamiltonian motion in three-dimensional
Euclidean space, governed by the equations

xx ′′(τ ) = yy ′′(τ ) = zz′′(τ ) = 1

(xyz)2/3
. (A.1)

We summarize here the proof (given in Gaffet (1996)) that the radial part of the motion
separates out and that the projected motion on the unit sphere is again Hamiltonian, although
not with respect to the original time coordinateτ .

First, we observe that, as noted by Anisimov and Lysikov (1970), equation (A.1) presents
three constants of the motion, denotedE, 6 andE∗, which can be defined through the
following single formula:

r2

2
≡ (x2+ y2+ z2)

2
= (τ 2E + τ6 + E∗). (A.2)

Let us write equations (A.1) in the form

d

dτ

(
x

dy

dτ
− y dx

dτ

)
=
(
x

y
− y
x

)/
(xyz)2/3 (A.3)

using coordinatesH ≡ y/x andK ≡ z/x on the unit sphere, andδ ≡ (1+ H 2 + K2) ≡
(r2/x2), we rewrite

d

dτ

(
r2

δ

dH

dτ

)
= (1−H 2)

H(xyz)2/3
. (A.4)

Introducing a new time coordinatet

t =
∫

dτ

r2
(A.5)

equation (A.4) becomes

d

dt

(
Ḣ

δ

)
= (1−H 2)

H(xyz)2/3
(A.6)

where the dot means derivation with respect tot , and the point (x, y, z) is now constrained
to lie on the unit sphere; that is to say,(xyz)2/3 means(HK)2/3/δ. Another equation
obtained by exchanging the roles ofH andK, also holds,

d

dt

(
K̇

δ

)
= (1−K2)

K(xyz)2/3
. (A.7)

It was shown in our earlier work that (A.6) and (A.7) are the equations governing the motion
of a particle of unit mass on the spherex2+ y2+ z2 = 1, in a potentialVS

VS = 3/2

(xyz)2/3
. (A.8)

The energy constant of this spherical motion is the following combination of constants

1

2
(4EE∗ −62) = 1

2

(
dσ

dt

)2

+ VS (A.9)

where dσ 2 is the line element on the sphere (cf equation 1.8).
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